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ADDpot '
Contaminant Concentration x Intake Rate x Exposure Duration

Body Weight x Averaging Time
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 (Eqn. 2-1)

2. ANALYSIS OF UNCERTAINTY
The chapters that follow will discuss exposure component.

factors and algorithms for estimating exposure.  Exposure
factor values can be used to obtain a range of exposure
estimates such as average, high-end and bounding Why should the exposure assessor be concerned with
estimates.  It is instructive here to return to the general uncertainty?  As noted by the U.S. EPA (1992), exposure
equation for potential Average Daily Dose (ADD ) that assessment utilizes a broad array of information sources andpot

was introduced in the opening chapter of this handbook: analysis techniques.  Even in situations where actual
exposure-related measurements exist, assumptions or

With the exception of the contaminant concentration, have a responsibility to present not just numbers, but also
all parameters in the above equation are considered a clear and explicit explanation of the implications and
exposure factors and, thus, are treated in fair detail in other limitations of their analyses.
chapters of this handbook.  Each of the exposure factors Morgan and Henrion (1990) provide an argument by
involves humans, either in terms of their characteristics analogy.  When scientists report quantities that they have
(e.g., body weight) or behaviors (e.g., amount of time spent measured, they are expected to routinely report an estimate
in a specific location, which affects exposure duration). of the probable error associated with such measurements.
While the topic of uncertainty applies equally to Because uncertainties inherent in policy analysis (of which
contaminant concentrations and exposure factors, the focus exposure assessment is a part) tend to be even greater than
of this chapter is on uncertainty as it relates to exposure those in the natural sciences, exposure assessors also should
factors.  Consequently, examples provided in this chapter be expected to report or comment on the uncertainties
relate primarily to exposure factors, although contaminant associated with their estimates.
concentrations may be used when they better illustrate the Additional reasons for addressing uncertainty in
point under discussion. exposure or risk assessments (U.S. EPA, 1992, Morgan and

This chapter also is intended to acquaint the Henrion, 1990) include the following:
exposure assessor with some of the fundamental concepts
and precepts related to uncertainty, together with methods • Uncertain information from different sources of
and considerations for evaluating and presenting the different quality often must be combined for the
uncertainty associated with exposure estimates.  Subsequent assessment
sections in this chapter are devoted to the following topics: • Decisions need to be made about whether or

• Reasons for concern about uncertainty information
• Distinction between uncertainty and variability • Biases may result in so-called "best estimates"
• Types and sources of uncertainty that in actuality are not very accurate
• Types and sources of variability • Important factors and potential sources of
• Methods of analyzing uncertainty and variability disagreement in a problem can be identified.
• Presenting results of uncertainty analysis.

Fairly extensive treatises on the topic of uncertainty that results of an assessment or analysis will be used in an
have been provided, for example, by Morgan and Henrion appropriate manner.  Problems rarely are solved to
(1990), the National Research Council (NRC, 1994) and, everyone's satisfaction, and decisions rarely are reached on
to a lesser extent, the U.S. EPA (1992, 1995).  The topic the basis of a single piece of evidence.  Results of prior
commonly has been treated as it relates to the overall analyses can shed light on current assessments, particularly
process of conducting risk assessments; because exposure if they are couched in the context of prevailing uncertainty
assessment is a component of risk-assessment process, the at the time of analysis.  Exposure assessment tends to be an

general concepts apply equally to the exposure-assessment

2.1. CONCERN ABOUT UNCERTAINTY

inferences will still be required because data are not likely
to be available for all aspects of the exposure assessment.
Moreover, the data that are available may be of
questionable or unknown quality.  Thus, exposure assessors

how to expend resources to acquire additional

Addressing uncertainty will increase the likelihood

iterative process, beginning with a screening-level
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assessment that may identify the need for more in-depth consumption (and concentration of the contaminant)
assessment.  One of the primary goals of the more detailed exactly, thereby eliminating uncertainty in the measured
assessment is to reduce uncertainty in estimated exposures. daily dose.  The daily dose still has an inherent day-to-day
This objective can be achieved more efficiently if guided by variability, however, due to changes in the individual's daily
presentation and discussion of factors thought to be water intake.
primarily responsible for uncertainty in prior estimates. It is impractical to measure the individual's dose

2.2. UNCERTAINTY VERSUS VARIABILITY
While some authors have treated variability as a number of measurements, in an attempt to "average out" the

specific type or component of uncertainty, the U.S. EPA day-to-day variability.  The individual has a true (but
(1995) has advised the risk assessor (and, by analogy, the unknown) ADD, which has now been estimated based on a
exposure assessor) to distinguish between uncertainty and sample of measurements.  Because the individual's true
variability.  Uncertainty represents a lack of knowledge average is unknown, it is uncertain how close the estimate
about factors affecting exposure or risk, whereas variability is to the true value.  Thus, the variability across daily doses
arises from true heterogeneity across people, places or time. has been translated into uncertainty in the ADD.  Although
In other words, uncertainty can lead to inaccurate or biased the individual's true ADD has no variability, the estimate of
estimates, whereas variability can affect the precision of the the ADD has some uncertainty. 
estimates and the degree to which they can be generalized. The above discussion pertains to the ADD for one

Uncertainty and variability can complement or person.  Now consider a distribution of ADDs across
confound one another.  An instructive analogy has been individuals in a defined population (e.g., the general U.S.
drawn by National Research Council (NRC 1994, Chapter population).  In this case, variability refers to the range and
10), based on the objective of estimating the distance distribution of ADDs across individuals in the population.
between the earth and the moon.  Prior to fairly recent By comparison, uncertainty refers to the exposure assessor's
technology developments, it was difficult to make accurate state of knowledge about that distribution, or about
measurements of this distance, resulting in measurement parameters describing the distribution (e.g., mean, standard
uncertainty.  Because the moon's orbit is elliptical, the deviation, general shape, various percentiles).
distance is a variable quantity.  If only a few measurements As noted by the National Research Council, the
were to be taken without knowledge of the elliptical pattern, realms of uncertainty and variability have fundamentally
then either of the following incorrect conclusions might be different ramifications for science and judgment.  For
reached: example, uncertainty may force decision-makers to judge

• That the measurements were faulty, thereby or underestimated for every member of the exposed
ascribing to uncertainty what was actually population, whereas variability forces them to cope with the
caused by variability certainty that different individuals are subject to exposures

• That the moon's orbit was random, thereby not both above and below any of the exposure levels chosen as
allowing uncertainty to shed light on seemingly a reference point.
unexplainable differences that are in fact
variable and predictable.

A more fundamental error in the above situation assessment is relatively large, and can quickly become too
would be to incorrectly estimate the true distance, by complex for facile treatment unless it is divided into smaller
assuming that a few observations were sufficient.  This and more manageable topics.  One method of division
latter pitfall -- treating a highly variable quantity as if it (Bogen, 1990) involves classifying sources of uncertainty
were invariant or only uncertain -- is probably the most according to the step in the risk assessment process (hazard
relevant to the exposure or risk assessor. identification, dose-response assessment, exposure

Now consider a situation that relates to exposure, assessment or risk characterization) at which they can
such as estimating the average daily dose by one exposure occur.  A more abstract and generalized approach preferred
route -- ingestion of contaminated drinking water.  Suppose by some scientists is to partition all uncertainties among the
that it is possible to measure an individual's daily water

every day.  For this reason, the exposure assessor may
estimate the average daily dose (ADD) based on a finite

how probable it is that exposures have been overestimated

2.3. TYPES OF UNCERTAINTY
The problem of uncertainty in exposure or risk
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three categories of bias, randomness and true variability.
These ideas are discussed later in some examples.

The U.S. EPA (1992) has classified uncertainty in
exposure assessment into three broad categories:

1. Uncertainty regarding missing or incomplete
information needed to fully define exposure and
dose (Scenario Uncertainty).

2. Uncertainty regarding some parameter
(Parameter Uncertainty).

3. Uncertainty regarding gaps in scientific theory
required to make predictions on the basis of
causal inferences (Model Uncertainty).

Identification of the sources of uncertainty in an exposure
assessment is the first step in determining how to reduce
that uncertainty.  The types of uncertainty listed above can
be further defined by examining their principal causes.
Sources and examples for each type of uncertainty are
summarized in Table 2-1 and discussed in further detail
below.

The sources of scenario uncertainty include
descriptive errors, aggregation errors, errors in professional
judgment, and incomplete analysis.  Descriptive errors
include information errors such as the current producers of
the chemical and its industrial, commercial, and consumer
uses.  Information of this type is the foundation for fate-and-
transport analysis and the eventual development of exposure
pathways, scenarios, exposed populations, and exposure
estimates.

Aggregation errors arise as a result of lumping
approximations.  Included among these are assumptions of
homogeneous populations, temporal approximations such
as assuming steady-state conditions for a dynamic process,
and spatial approximations such as using a 2-dimensional
mathematical model to represent a 3-dimensional aquifer.

Errors in professional judgment can come into play
in virtually every aspect of the exposure assessment
process, including defining appropriate exposure scenarios,
selecting environmental fate models, determining
representative environmental conditions, etc.  Judgment
errors can be the result of limited experience, or can arise
when the assessor has difficulty separating opinion from
fact.

.

Table 2-1.  Three Types of Uncertainty and Associated Sources and Examples

Type of Uncertainty Sources Examples

Scenario Uncertainty Descriptive errors Incorrect or insufficient information

Aggregation errors Spatial or temporal approximations

Judgment errors Selection of an incorrect model

Incomplete analysis Overlooking an important pathway

Parameter Uncertainty Measurement errors Imprecise or biased measurements

Sampling errors Small or unrepresentative samples

Variability In time, space or activities

Surrogate data Structurally-related chemicals

Model Uncertainty Relationship errors Incorrect inference on the basis for correlations

Modeling errors Excluding relevant variables
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A potentially serious source of uncertainty in relatively large data sets may be insufficient to pin down the
exposure assessments arises from incomplete analysis.  For mean with the desired degree of precision.
example, the exposure assessor may overlook an important Generic data are commonly used when site-specific
exposure pathway due to lack of information regarding the data are not available.  Examples include standard emission
use of a chemical in a consumer product, or may fail to factors for industrial processes and generalized descriptions
include an important population subgroup that has of environmental settings.  Surrogate data are commonly
increased susceptibility to adverse health effects of used when chemical-specific data are not available.  One
exposure. example is the use of structurally-related chemicals as

Sources of parameter uncertainty include
measurement errors, sampling errors, variability, and use of
generic or surrogate data.  Measurement errors may be
random or systematic.  Random errors result from imprecise
measurements.  For example, two observers who time an
individual's activity may record different durations.
Similarly, the  second analysis of a split sample will not sources of model uncertainty.  Relationship errors include
necessarily yield the same result as the first analysis. flaws in environmental fate models and poor correlations
Systematic errors reflect a bias or tendency to measure between chemical properties or between structure and
something other than what was intended, as could occur if reactivity.  Modeling errors arise because models tend to be
an ambient monitoring design inadvertently over- simplified representations of physical and chemical
represented heavily industrialized areas.  Similarly, body processes.  Even after the exposure assessor has selected
weight would be systematically overestimated if all the most appropriate model, he or she still faces the
measurements were made using fully clothed individuals. question of how well the model represents actual

Sampling errors tend to reduce sample conditions.  This question is compounded by the overlap
representativeness.  The general purpose of sampling is to between modeling uncertainties and other uncertainties
collect information on some fraction of a population in order (e.g., natural variability in environmental inputs, model
to make an inference about the entire group.  If the sample representativeness, aggregation errors).  The dilemma
size for a given data collection effort is relatively small, then facing exposure assessors is that many existing models
the random sampling error associated with that effort will (particularly the very complex ones) and the hypotheses
tend to be correspondingly large.  If the exposure contained within them cannot be fully tested (Beck, 1987),
assessment uses data that were generated for another although certain components of the model may be testable.
purpose, then uncertainty will arise if the data do not Even if a model has been validated under a particular set of
represent the exposure scenario being analyzed.  For conditions, its application in cases beyond the test
example, use of product sales information to infer conditions will introduce uncertainty.
residential usage patterns may be misleading if residential Because uncertainty in exposure assessments is
and commercial sales cannot be reliably distinguished. fundamentally tied to a lack of knowledge concerning

The inherent variability in environmental and important exposure factors, strategies for reducing
exposure-related parameters is a major source of uncertainty necessarily involve reduction or elimination of
uncertainty.  For example, meteorological and hydrological knowledge gaps.  Example strategies to reduce uncertainty
conditions change seasonally at a given location, soil include (1) collection of new data using a larger sample
characteristics exhibit large spatial variability, and human size, an unbiased sample design, a more direct measurement
activity patterns depend on the age, sex, and geographic method or a more appropriate target population, and (2) use
location of specific individuals in the population.  Although of more sophisticated modeling and analysis tools.
uncertainty and variability are treated in this chapter as
different entities, it is noteworthy that variation in one
quantity can contribute to uncertainty in another (NRC,
1994).  The most relevant example involves the influence location, activity, and behavior or preferences at a particular
of the variability in a quantity on the uncertainty of its mean point in time, as well as pollutant emission rates and
-- when the quantity varies by orders of magnitude, even physical/chemical processes that affect concentrations in

surrogates for the chemical of interest.  An example of
surrogate data not pertaining to chemicals is the use of an
individual's heart rate to infer his/her breathing rate.  Since
surrogate data introduce additional uncertainty, they should
be avoided if actual data can be obtained.

Relationship and modeling errors are the primary

2.4. TYPES OF VARIABILITY
Variability in exposure is related to an individual's

various media (e.g., air, soil, food and water).  The
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variations in pollutant-specific emissions or processes, and combine multiplicatively generally will lead to an
in individual locations, activities or behaviors, are not approximately lognormal distribution across the population,
necessarily independent of one another.  For example, both or across spatial/temporal dimensions.
personal activities and pollutant concentrations at a specific According to the National Research Council (NRC
location might vary in response to weather conditions, or 1994), variability can be confronted in four basic ways
between weekdays and weekends. when dealing with science-policy questions surrounding 

At a more fundamental level, three types of issues such as exposure or risk assessment.  The first is to
variability can be distinguished:  ignore the variability and hope for the best.  This strategy

• Variability across locations (Spatial Variability) For example, the assumption that all adults weigh 70 kg is
• Variability over time (Temporal Variability) likely to be correct within ±25% for most adults.
• Variability among individuals (Inter-individual The second strategy involves disaggregating the

Variability). variability in some explicit way, in order to better

Spatial variability can occur both at regional
(macroscale) and local (microscale) levels.  For example,
fish intake rates can vary depending on the region of the
country.  Higher consumption may occur among
populations located near large bodies of water  such as the
Great Lakes or coastal areas.  As another example, outdoor
pollutant levels  can be affected at the regional level by
industrial activities and at the local level by activities of
individuals.  In general, higher exposures tend to be
associated with closer proximity to the pollutant source,
whether it be an industrial plant or related to a personal
activity such as showering or gardening.  In the context of
exposure to airborne pollutants, the concept of a
"microenvironment" has been introduced (Duan 1982) to
denote a specific locality (e.g., a residential lot or a room in
a specific building) where the airborne concentration can be
treated as homogeneous (i.e., invariant) at a particular point
in time.

Temporal variability refers to variations over time,
whether long- or short-term.  Seasonal fluctuations in
weather, pesticide applications, use of woodburning
appliances and fraction of time spent outdoors are examples
of longer-term variability.  Examples of shorter-term
variability are differences in industrial or personal activities
on weekdays versus weekends or at different times of the
day.

Inter-individual variability can be either of two
types:  (1) human characteristics such as age or body
weight, and (2) human behaviors such as location and
activity patterns.  Each of these variabilities, in turn, may be
related to several underlying phenomena that vary.  For
example, the natural variability in human weight is due to a
combination of genetic, nutritional, and other lifestyle or
environmental factors.  According to the central limit
theorem, variability arising from independent factors that 

tends to work best when the variability is relatively small.

understand it or reduce it.  Mathematical models are
appropriate in some cases, as in fitting a sine wave to the
annual outdoor concentration cycle for a particular pollutant
and location.  In other cases, particularly those involving
human characteristics or behaviors, it is easier to
disaggregate the data by considering all the relevant
subgroups or subpopulations.  For example, distributions of
body weight could be developed separately for adults,
adolescents and children, and even for males and females
within each of these subgroups.  Temporal and spatial
analogies for this concept involve measurements on
appropriate time scales and choosing appropriate
subregions or microenvironments.

The third strategy is to use the average value of a
quantity that varies.  Although this strategy might appear as
tantamount to ignoring variability, it needs to be based on
a decision that the average value can be estimated reliably
in light of the variability (e.g., when the variability is known
to be relatively small, as in the case of adult body weight).

The fourth strategy involves using the maximum or
minimum value for an exposure factor.  This is perhaps the
most common method of dealing with variability in
exposure or risk assessment -- to focus on one time period
(e.g., the period of peak exposure), one spatial region (e.g.,
in close proximity to the pollutant source of concern), or
one subpopulation (e.g., exercising asthmatics).

2.5. METHODS OF ANALYZING UNCERTAINTY
AND VARIABILITY
Exposure assessments often are developed in a

phased approach.  The initial phase usually screens out the
scenarios that are not expected to pose much risk, to
eliminate them from more detailed, resource-intensive
review.  Screening-level assessments typically examine
exposures that would fall on or beyond the high end of the
expected exposure distribution.  Because screening-level
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analyses are usually included in the final exposure Several approaches can be used to characterize
assessment, the final document may contain scenarios that uncertainty in parameter values.  When uncertainty is high,
differ quite markedly in sophistication, data quality, and the assessor may use order-of-magnitude bounding
amenability to quantitative expressions of uncertainty. estimates of parameter ranges (e.g., from 0.1 to 10 liters for

According to the U.S. EPA (1992), uncertainty daily water intake).  Another method describes the range for
characterization and uncertainty assessment are two ways of each parameter including the lower and upper bounds as
describing uncertainty at different degrees of sophistication. well as a "best estimate" (e.g., 1.4 liters per day) determined
Uncertainty characterization usually involves a qualitative by available data or professional judgement.  When
discussion of the thought processes used to select or reject sensitivity analysis (discussed below) indicates that a
specific data, estimates, scenarios, etc.  Uncertainty parameter profoundly influences exposure estimates, the
assessment is a more quantitative process that may range assessor should develop a probabilistic description of its
from simpler measures (e.g., ranges) and simpler analytical range.  If there are enough data to support their use,
techniques (e.g., sensitivity analysis) to more complex standard statistical methods are preferred.  If the data are
measures and techniques.  Its goal is to provide decision inadequate, expert judgment can be used to generate a
makers with information concerning the quality of an subjective probabilistic representation.  Such judgments
assessment, including the potential variability in the should be developed in a consistent, well-documented
estimated exposures, major data gaps, and the effect that manner.  Morgan and Henrion (1990) and Rish (1988)
these data gaps have on the exposure estimates developed. describe techniques to solicit expert judgment.

A distinction between uncertainty and variability was Most approaches to quantitative analysis examine
made in Section 2.2.  Although the qualitative approach how uncertainties in values of specific parameters translate
mentioned above applies more directly to uncertainty and into the overall uncertainty of the assessment.  Details may
the quantitative process more so to variability, there is some be found in reviews such as Cox and Baybutt (1981),
degree of overlap.  In general, either method provides the Whitmore (1985), Inman and Helton (1988), Seller (1987),
assessor or decision-maker with insights to better evaluate and Rish and Marnicio (1988).  These approaches can
the assessment in the context of available data and generally be described (in order of increasing complexity
assumptions.  The following paragraphs briefly describe and data needs) as:  (1) sensitivity analysis; (2) analytical
some of the more common procedures for analyzing uncertainty propagation; (3) probabilistic uncertainty
uncertainty and variability in exposure assessments. analysis; or (4) classical statistical methods (U.S. EPA
Principles that pertain to presenting the results of 1992).  The four approaches are summarized in Table 2-2
uncertainty analysis are discussed in the next section. and described in greater detail below.

Table 2-2.  Approaches to Quantitative Analysis of Uncertainty

Approach Description Example

Sensitivity Analysis Changing one input variable at a time while Fix each input at lower (then upper) bound
leaving others constant, to examine effect on while holding others at nominal values (e.g.,
output medians)

Analytical Uncertainty Propagation Examining how uncertainty in individual Analytically or numerically obtain a partial
parameters affects the overall uncertainty of the derivative of the exposure equation with respect
exposure assessment to each input parameter

Probabilistic Uncertainty Analysis Varying each of the input variables over various Assign probability density function to each
values of their respective probability distributions parameter; randomly sample values from each

distribution and insert them in the exposure
equation (Monte Carlo)

Classical Statistical Methods Estimating the population exposure distribution Compute confidence interval estimates for
directly, based on measured values from a various percentiles of the exposure distribution
representative sample
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Sensitivity analysis is the process of changing one
variable while leaving the others constant to determine its
effect on the output.  This procedure fixes each uncertain
quantity at its credible lower and upper bounds (holding all
others at their nominal values, such as medians) and
computes the results of each combination of values.  The
results help to identify the variables that have the greatest
effect on exposure estimates and help focus further
information-gathering efforts.  However, the results
themselves can be sensitive to the choices of nominal values
and lower/upper bounds, and do not indicate the probability
of a variable being at any point within its range; therefore,
this approach is most useful at the screening level, to
determine the need for and direction of further analyses.

Analytical uncertainty propagation examines how
uncertainty in individual parameters affects the overall
uncertainty of the exposure assessment.  The uncertainties
associated with various parameters may propagate through
a model very differently, even if they have approximately
the same uncertainty.  Since uncertainty propagation is a
function of both the data and the model structure, this
procedure evaluates both input variances and model
sensitivity.  Application of this approach to exposure
assessment requires explicit mathematical expressions of
exposure, estimates of variance for each variable of interest,
and the ability to obtain a mathematical (analytical or
numerical) derivative of the exposure equation.

Although uncertainty propagation is a powerful tool,
it should be applied with caution:  It is difficult to generate
and solve the equations for the sensitivity coefficients.  The
technique is most accurate for linear equations, so any
departure from linearity must be carefully evaluated.  In
addition, assumptions such as variable independence and
error normality must be verified.  Finally, the information to
support required parameter variance estimates may not be
readily available.  In some cases, analytical uncertainty
propagation may be more difficult than probabilistic
uncertainty analyses, discussed below.

The most common example of probabilistic
uncertainty analysis is the Monte Carlo method.  This
simulation technique assigns a probability density function
to each input parameter, then randomly selects values from
each of the distributions and inserts them into the exposure
equation.  Repeated calculations produce a distribution of
predicted values, reflecting the combined impact of
variability in each input to the calculation.

The principal advantage of Monte Carlo simulation
is its very general applicability.  There is no restriction on
the form of the input distributions or the relationship

between input and output.  Correlations among input
parameters can be expressed and taken into account, and
computations are straightforward.  However, Monte Carlo
analysis does have its disadvantages -- the exposure
assessor should only consider using it when there are
credible distribution data (or ranges) for most key variables.
Even if these distributions are known, it may not be
necessary to apply this technique.  For example, one could
use central-tendency values (e.g., means, medians) for each
input parameter to develop a preliminary estimate of
“typical exposure,” recognizing that this combination of
parameters will not necessarily yield the average obtained
through Monte Carlo simulation.  In addition, it is not
necessary to use this technique if a bounding exposure
estimate indicates that the particular pathway or chemical
being assessed does not present a significant risk. 

As noted by Morgan and Henrion (1990), analysis of
Monte Carlo inputs and outputs also can shed light on the
attribution of uncertainty to specific input parameters.  For
example, the correlation between any input and the output
provides an indication of the linear contribution of each
input to output uncertainty, and is therefore a global
measure of uncertainty importance.  In a similar vein,
multiple regression analysis indicates the relative linear
contribution of each input to output uncertainty, after
statistically removing the effects attributable to other inputs,
provided that standardized regression coefficients are
examined.  Rank-order correlations and scatterplots of each
input against the output offer the means to investigate
nonlinear relationships that may be important.

Classical statistical methods can be used to analyze
variability and uncertainty in measured exposures.  Given
a data set of measured exposure values for a series of
individuals, the population distribution may be estimated
directly, provided that the sample design captures a
representative sample.  Measured exposure values can also
be used to directly compute confidence intervals for
percentiles of the exposure distribution (ACS, 1989).
When the exposure distribution is estimated from measured
exposures for a probability sample of population members,
confidence interval estimates for percentiles of the exposure
distribution are the primary uncertainty characterization.
Data collection, survey design, and the accuracy and
precision of measurement techniques should also be
discussed.

Often the observed exposure distribution is skewed
because many points within the sample distribution fall at
or below the detection limit, in the case of concentrations,
or because few points fall at the upper end of the
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distribution.  Fitting the data to a distribution type can be handbook deal with variability directly, through inclusion of
problematic in these situations because (1) there is no way statistics that pertain to the distributions for various
to determine the distribution of values below the detection exposure factors.  The uncertainty surrounding data for the
limit and (2) data are usually scant in low-probability areas exposure factors has been discussed qualitatively, by
(such as upper-end tails) where numerical values may vary describing the limitations and assumptions of each study or
widely.  Thus, for many data sets, means and standard data set.
deviations may be good approximations, but the tails of the Any exposure estimate developed by an assessor will
distribution will be much less well-characterized.  For data have associated assumptions about the setting, chemical,
sets where sampling is still practical, the sample may be population characteristics, and how contact with the
stratified in order to over sample the tail, thereby increasing chemical occurs through various exposure routes and
the precision with which that portion of the distribution can pathways.  The exposure assessor will need to examine
be estimated. many sources of information that bear either directly or

A variety of approaches can be used to quantitatively indirectly on these components of the exposure assessment.
characterize the uncertainty associated with model In addition, the assessor will be required to make many
constructs.  One approach uses different modeling decisions regarding the use of existing information in
formulations (including the preferred and plausible constructing scenarios and setting up the exposure
alternatives) and assumes that the range of outputs equations.  In presenting the scenario results, the assessor
represents the range of uncertainty.  This strategy is most should strive for a balanced and impartial treatment of the
useful when available data do not support any "best" evidence bearing on the conclusions with the key
approach, or when a model must be used to extrapolate assumptions highlighted.  For these key assumptions, one
beyond the conditions for which it was designed. should cite data sources and explain any adjustments of the

The issues of verifying computer code and verifying data.
the model are not the same, and should be performed in It is not sufficient to merely present the results of
separate steps.  Often there may be simplifications in the these many decisions using different exposure descriptors.
programming that lead to errors, even though the model A discussion also must be included that describes key
formulation is correct.  Once the computer code is verified, assumptions and indicates the parameters that are believed
the model output can be compared with real data to evaluate to have the greatest impact on the exposure estimate(s).
the model itself. The exposure assessor should strive to address questions

Where the data base is sufficient, the exposure such as:
assessor should characterize the uncertainty in the selected
model by describing the validation and verification efforts. • What is the basis or rationale for selecting these
The validation process compares the performance of the assumptions/parameters, such as data, modeling,
model to actual observations under situations representative scientific judgment, Agency policy, "what if"
of those being assessed.  Burns (1985) discusses considerations, etc.?
approaches for model validation.  The verification process
confirms that the model computer code produces the correct • What is the range or variability of the key
numerical output.  In most situations, only partial validation parameters?  How were the parameter values
is possible due to data deficiencies or model complexity. selected for use in the assessment?  Were

2.6. PRESENTING RESULTS OF UNCERTAINTY
ANALYSIS
Comprehensive qualitative analysis and rigorous

quantitative analysis are of little value for use in the • What is the assessor's confidence (including
decision-making process, if their results are not clearly qualitative confidence aspects) in the key
presented.  In this chapter, variability (the receipt of parameters and the overall assessment?  What
different levels of exposure by different individuals) has are the quality and the extent of the data base
been distinguished from uncertainty (the lack of knowledge supporting the selection of the chosen values?
about the correct value for a specific exposure measure or
estimate).  Most of the data that are presented in this

average, median, or upper-percentile values
chosen?  If other choices had been made, how
would the results have differed?



Volume I - General Factors

Chapter 2 - Analysis of Uncertainty

Exposure Factors Handbook Page
August 1996 2-9

The exposure assessor also should qualitatively Bogen, K.T.  (1990) Uncertainty in environmental health
describe the rationale for selection of conceptual and risk assessment.  Garland Publishing, New York,
mathematical models.  This discussion should address their NY.
verification and validation status, how well they represent Burns, L.A. (1985)  Validation methods for chemical
the situation being assessed (e.g., average or high-end exposure and hazard assessment models. 
estimates), and any plausible alternatives in terms of their EPA/600/D-85/297.
acceptance by the scientific community. Cox, D.C.; Baybutt, P.C. (1981)  Methods for uncertainty

Although incomplete analysis is essentially analysis.  A comparative survey.  Risk Anal.
unquantifiable as a source of uncertainty, it should not be 1(4):251-258.
ignored.  At a minimum, the assessor should describe the Duan, N. (1982)  Microenvironment types: A model for
rationale for excluding particular exposure scenarios; human exposure to air pollution.  Environ. Intl.
characterize the uncertainty in these decisions as high, 8:305-309.
medium, or low; and state whether they were based on data, Inman, R.L.; Helton, J.C. (1988)  An investigation of
analogy, or professional judgment.  Where uncertainty is uncertainty and sensitivity analysis techniques for
high, a sensitivity analysis can be used to establish credible computer models.  Risk Anal. 8(1):71-91.
upper limits on exposure by way of a series of "what if" Morgan, M.G.; Henrion, M. (1990)  Uncertainty: A guide
questions. to dealing with uncertainty in quantitative risk and

Although assessors have always used descriptors to policy analysis.  Cambridge University Press, New
communicate the kind of scenario being addressed, the York, NY.
1992 Exposure Guidelines establish clear quantitative National Research Council (NRC). (1994)  Science and
definitions for these risk descriptors.  These definitions judgment in risk assessment.  National Academy
were established to ensure that consistent terminology is Press, Washington, DC.
used throughout the Agency.   The risk descriptors defined Rish, W.R. (1988)  Approach to uncertainty in risk
in the Guidelines include descriptors of individual risk and analysis.  Oak Ridge National Laboratory. 
population  risk.  Individual risk descriptors are intended to ORNL/TM-10746.
address questions dealing with risks  borne by individuals Rish, W.R.; Marnicio, R.J. (1988)  Review of studies
within a population, including not only measures of central related to uncertainty in risk analysis.  Oak Ridge
tendency (e.g., average or median), but also those risks at National Laboratory.  ORNL/TM-10776.
the high end of the distribution.  Population risk descriptors Seller, F.A. (1987)  Error propagation for large errors. 
refer to an assessment of the extent of harm to the Risk Anal. 7(4):509-518.
population being addressed.  It can be either an estimate of U.S. EPA (1992)  Guidelines for exposure assessment
the number of cases of a particular effect that  might occur notice.  57FR11888, May 29, 1992.
in a population (or population segment), or a description of U.S. EPA (1995)  Guidance for risk characterization. 
what fraction of the population receives exposures, doses, Science Policy Council, Washington, DC.
or risks greater than a specified value.  The data presented Whitmore, R.W. (1985)  Methodology for
in the Exposure Factors Handbook is one of the tools characterization of uncertainty in exposure
available to exposure assessors to construct the various risk assessments.  EPA/600/8-86/009.
descriptors.
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